Interactive image segmentation based on synthetic graph coordinates

نویسندگان

  • Costas Panagiotakis
  • Harris Papadakis
  • Ilias Grinias
  • Nikos Komodakis
  • Paraskevi Fragopoulou
  • Georgios Tziritas
چکیده

In this paper, we propose a framework for interactive image segmentation. The goal of interactive image segmentation is to classify the image pixels into foreground and background classes, when some foreground and background markers are given. The proposed method minimizes a min-max Bayesian criterion that has been successfully used on image segmentation problem and it consists of several steps in order to take into account visual information as well as the given markers, without any requirement of training. First, we partition the image into contiguous and perceptually similar regions (superpixels). Then, we construct a weighted graph that represents the superpixels and the connections between them. An efficient algorithm for graph clustering based on synthetic coordinates is used yielding an initial map of classified pixels. This method reduces the problem of graph clustering to the simpler problem of point clustering, instead of solving the problem on the graph data structure, as most of the known algorithms from literature do. Fi∗Corresponding author Email addresses: [email protected] (Costas Panagiotakis), [email protected] (Harris Papadakis), [email protected] (Elias Grinias), [email protected] (Nikos Komodakis), [email protected] (Paraskevi Fragopoulou), [email protected] (Georgios Tziritas) Paraskevi Fragopoulou is also with the Foundation for Research and Technology-Hellas, Institute of Computer Science, 70013 Heraklion, Crete, Greece. Preprint submitted to Pattern Recognition January 10, 2013 nally, having available the data modeling and the initial map of classified pixels, we use a Markov Random Field (MRF) model or a flooding algorithm to get the image segmentation by minimizing a min-max Bayesian criterion. Experimental results and comparisons with other methods from the literature are presented on LHI, Gulshan and Zhao datasets, demonstrating the high performance and accuracy of the proposed scheme.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interactive Image Segmentation via Graph Clustering and Synthetic Coordinates Modeling

We propose a method for interactive image segmentation. We construct a weighted graph that represents the superpixels and the connections between them. An efficient algorithm for graph clustering based on synthetic coordinates is used yielding an initial map of classified pixels. The proposed method minimizes a min-max Bayesian criterion that has been successfully used on image segmentation pro...

متن کامل

Segmentation of Magnetic Resonance Brain Imaging Based on Graph Theory

Introduction: Segmentation of brain images especially from magnetic resonance imaging (MRI) is an essential requirement in medical imaging since the tissues, edges, and boundaries between them are ambiguous and difficult to detect, due to the proximity of the brightness levels of the images. Material and Methods: In this paper, the graph-base...

متن کامل

A comparative performance of gray level image thresholding using normalized graph cut based standard S membership function

In this research paper, we use a normalized graph cut measure as a thresholding principle to separate an object from the background based on the standard S membership function. The implementation of the proposed algorithm known as fuzzy normalized graph cut method. This proposed algorithm compared with the fuzzy entropy method [25], Kittler [11], Rosin [21], Sauvola [23] and Wolf [33] method. M...

متن کامل

Multiple Sclerosis Lesion Segmentation Using an Automatic Multimodal Graph Cuts

Graph Cuts have been shown as a powerful interactive segmentation technique in several medical domains. We propose to automate the Graph Cuts in order to automatically segment Multiple Sclerosis (MS) lesions in MRI. We replace the manual interaction with a robust EM-based approach in order to discriminate between MS lesions and the Normal Appearing Brain Tissues (NABT). Evaluation is performed ...

متن کامل

SAR Image Classification by Multilayer Back Propagation Neural Network

A novel descriptive feature extraction method of Discrete Fourier transform and neural network classifier for classification of Synthetic Aperture Radar (SAR) images is proposed. The classification process has the following stages (1) Image Segmentation using statistical Region Merging (SRM) (2) Polar transform and Feature extraction using Discrete Fourier Transform (3) Neural Network classific...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pattern Recognition

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2013